

Philadelphia University

Faculty of Engineering & Technology Department of Mechatronics Engineering Second Semester 2024/2025

Course Information

Course Title:	Mechatronics Systems Modeling and Simulation (640722)
Prerequisite:	None
Credit Hours:	3 credit hours (16 weeks per semester, approximately 45 contact hours)
Textbook:	System Dynamics for Engineering Students: Concepts and Applications, by Nicolae Lobontiu. Elsevier Publication 2010.
References:	 - Modeling and Analysis of Dynamic Systems", Ramin S. Esfandiari, Bei Lu- 3rd Edition-CRC Press, 2018 - George Pelz. Mechatronic Systems: modeling and simulation with HDLs. Chapter 2 Wiley 2003 - Devdas Shetty and Richard A Kolk. Mechatronics System Design, 2nd edition. Chapter 2. Cengage, Learning 2011 - Rolf Isermann "Mechatronics Design Approach" Chapter 2 in Mechatronics Handbook edited by Bishop - "System Dynamics", Katsuhiko Ogata, 4th Edition, Pearson Prentice Hall, 2004. - Guide to Modeling and Simulation of Systems of Systems (Simulation Foundations, Methods and Applications) by Bernard P. Zeigler and Hassam S. S2012 Edition - System design, modeling and simulation, Claudius Ptolemaeus, Editor, 2014. - System Identification: Theory for the User by Lennart Ljung 2nd Edition - Modern Control Engineering by Ogata, 2010 - System Dynamics: Modeling and Simulation of Mechatronic Systems 5th Edition, by Dean C. Karnopp , Donald L. Margolis, Ronald C. Rosenberg, 2019. - System Dynamics", Palm III, William, 2nd Edition, McGraw-Hill Science, 2009 - Introduction to Physical Systems Modelling with Bond Graphs Jaan F. Broenink / University of Twente - Netherlands
Website:	http://www.philadelphia.edu.jo/academics/malkhawaldeh/
Course Description:	Based on the knowledge of the undergraduate level students get the necessary skills in analytical and computational methods in modeling and simulation to work in a scientific environment and solve engineering problems in research and development projects. This course covers three main areas: modelling, simulation, and identification. It presents several modelling methodologies that can be used for mechatronics systems. This will cover mathematical and graph models. Software tools, such as

	MATLAB / Simulink and / or LABVIEW, will be used to simulate the systems and analyze the responses. Also, an introduction to analog simulation methods and system identification will be provided as well.					
Instructors:	Dr. Mustafa Awwad Al-Khawaldeh					
Course Coordinator:	Dr. Mustafa Awwad Al-Khawaldeh					
Technology Requirements:• Personal computer, laptop, or mobile phone. • Internet Connection. • Access to Philadelphia University E-Learning Portal (MS Teams and Mood)						
Learning Style: (F2F; Blended; or Online): Blended						
Communication:	 Announcement: the announcements will be posted in MS Teams or Moodle on a regular basis. Email. MS Teams or Moodle chats. 					
Course Objectives:	 The main objective of this course is: Understand the hardware and software design requirements of distributed and embedded real-time systems. Design and implementation of real-time algorithms for mechatronics systems Study stability of embedded real-time systems. 					

Course Learning Outcomes (CLO) and Relation to ABET Student Outcomes				
CLOs	Outcomes	ABET PLOs		
K1,	Understand analytical and computational principles in modeling and simulation field.	1		
K2	Obtain a mathematical model of different physical systems (mechanical, fluid, thermal and electrical).	1		
K3 Analyze the transient-response of second-order systems		6		
S2 Study new technologies in modeling mechatronics systems.		7		
C3 Have the ability to design and implement real-time embedded systems.		3		

Grading Policy and Assessment Instruments								
Graded Item	Marks	Topic (s)	CLO(s)	Learning Portal (Teams/ Moodle/ F2F/ Others)	Week			
Assignment 1	10	Mathematical Modeling of Electromechanical Systems,	1-2	Moodle	4			
Assignment 2	10	Transient-Response Analysis of Second-Order Systems Using MATLAB	1-2	Moodle	12			
Quiz 1	10	Mathematical Modeling of Liquid- Level Systems	1-4	F2F	6			
Mid Exam	30%	Weeks 1-8	1,2,3	F2F	8			
Final Exam	40%	Week 1-15	1-4	F2F	16			
Total Marks	100%							

Notes:	 Two written exams will be given. Copying homework is forbidden, any student caught copying the homework or any part of the homework will receive zero marks for that homework. Project: Students will be divided into groups of five students, and each group will present a project that deals with a proposal for entrepreneurial work according to what the student achieved during the semester. Each group's report will be discussed during the lectures and before the end of the semester. Assignment: A number of assignments will be given through the e-learning platform (Moodle). Each student must submit at least four assignments during the semester and before the due date. The final exam will cover all the class material.
--------	--

Course Content: Learning Resources/ References/ Activities/ Assessment Methods							
Week	Lecture	Торіс	CLOS	Learning Resources/ References/ Activities (Learning & Teaching Methods)	Learning Style (F2F, Synchronous, Asynchronous)	Assessment Method	
1	L1	Mechatronics Design Process	1	Lecture Notes + Moodle + Teams	Synchronous		
1	L2	Review: 1. Modeling and Simulation Principles, system dynamics	1	Recorded video + Moodle	Asynchronous		
2	L1	Laplace Transform ,Inverse Laplace Transformation	1	Lecture Notes + Moodle + Teams	Synchronous		
2	L2	Solving linear differential equations, Solving time-invariant differential equations	1	Recorded video + Moodle	Asynchronous		
3	L1	Modeling of mechanical systems: Rotational motion and translational motion	1	Lecture Notes + Moodle + Teams	Synchronous		
5	L2	Translational-rotational motion, an energy method for deriving equations of motion	1	Recorded video + Moodle	Asynchronous	Assign	
4	L1	Modeling of electrical systems	1	Lecture Notes + Moodle + Teams	Synchronous		
	L2	Mathematical modeling of operational- amplifier systems	1	Recorded video + Moodle	Asynchronous		
	L1	Mathematical modeling of electromechanical Systems: Armature current control of dc servomotors.	2	Lecture Notes + Moodle + Teams	Synchronous		
5	L2	Mathematical modeling of electromechanical Systems: Field current control of dc servomotors.	2	Recorded video + Moodle	Asynchronous	Assign	
6	L1	Transfer-function approach to modeling dynamic systems	1	Lecture Notes + Moodle + Teams	Synchronous		
	L2	Block diagrams of dynamic systems	1	Recorded video + Moodle	Asynchronous		
7	L1	Mathematical modeling of fluid Systems	3	Lecture Notes + Moodle + Teams	Synchronous	Selection of Projects	
	L2	Mathematical modeling of liquid-level systems	3	Recorded video + Moodle	Asynchronous	Flojects	
8	L1	Mathematical modeling of a thermal systems.	2	Lecture Notes + Moodle + Teams	Synchronous	Mid Exam	
0	L2	Mathematical modeling of a pneumatic system.	2	Recorded video + Moodle	Asynchronous		
9	L1	Analogous systems: electrical ,mechanical, thermal, pneumatic and liquid-level systems	2	Lecture Notes + Moodle + Teams	Synchronous	Project	
	L2	Mechanical-electrical analogies systems: Force-Voltage Analogy Force-current analogy	2	Recorded video + Moodle	Asynchronous	(Phase1)	
10	L1	Nonlinear systems	4	Lecture Notes + Moodle + Teams	Synchronous		
	L2	Linearization of nonlinear Systems	2	Recorded video + Moodle	Asynchronous		

11	L1	State-Space approach	1	Lecture Notes + Moodle + Teams	Synchronous	Assign
11	L2	State-Space Approach to modeling dynamic Systems	1	Recorded video + Moodle	Asynchronous	
12	L1	Time-Domain Analysis of Dynamic Systems Using MATLAB	1	Lecture Notes + Moodle + Teams	Synchronous	Project (Phase2)
12	L2	Transient-Response Analysis of Second- Order Systems Using MATLAB	1	Recorded video + Moodle	Asynchronous	
12	L1	Introduction to System Identification	1	Lecture Notes + Moodle + Teams	Synchronous	
13	L2	Model Parameterization and Prediction, Nonparametric Identification	1	Recorded video + Moodle	Asynchronous	
14	L1	Higher-order mathematical models	3	Lecture Notes + Moodle + Teams	Synchronous	Project (Phase3)
	L2	Example: Example: 3rd order model	1-4	Recorded video + Moodle	Asynchronous	
	L1	Modeling with Bond Graphs	1-4	PP presentation + Moodle	Synchronous	Project Presentation
15	L2	Bond Graph examples: Mass-Spring- damper ,RLC Circuit and hoisting device	1-4	Recorded video + Moodle	Asynchronous	Project Presentation
	L1	Case Study: Hard Drives	1-4		F2F	
16	L2	Final exam				Final Exam

Notes:

For Blended and F2F Courses: L1 & L2 each 1 hour. For Online Course: L1 and L2 each 1.5 hours.

Credit Hours Distribution Report					
	Learning Style	Credit Hours			
F2F		3			
Synchronous		23			
Asynchronous		22			
	Total 48				
Academic Honesty/ Student Conduct	 As a student at Philadelphia University, you are expec university regulations and guidelines for academic honest found in student handbook. This means that you should not cheat, plagiarize and let an your account in LMS learning portals. 	y/student conduct			
Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse, acceptable to and approved by the Dean of the relevant college/faculty, shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.					

February 2024